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1. Introduction

Games with discontinuous payoffs have been used to model a variety of important economic problems; for example, 
Hotelling location games, Bertrand competition, and various auction models. The seminal work by Reny (1999) proposed 
the “better reply security” condition and proved the equilibrium existence in quasiconcave compact games with discontin-
uous payoffs. Since the hypotheses are sufficiently simple and easily verified, the increasing applications of his results has 
widened significantly in recent years, as evidenced by Jackson and Swinkels (2005) and Monteiro and Page (2008) among 
others. A number of papers appeared in the topic of discontinuous games and further extensions have been obtained in 
several directions; see, for example, Lebrun (1996), Bagh and Jofre (2006), Bich (2009), Carbonell-Nicolau (2011), Balder
(2011), Carmona (2010, 2011), Carmona (forthcoming), Prokopovych (2011, 2013), Prokopovych (forthcoming), de Castro
(2011), McLennan et al. (2011), Reny (2011, 2013), Tian (2012), Barelli and Meneghel (2013) and Prokopovych and Yannelis
(2014) among others.

In this paper, we consider discontinuous games with asymmetric information; i.e., games with a finite set of players and 
each of whom is characterized by his own private information (which is a partition of an exogenously given state space 
representing the uncertainty of the world), a strategy set, a state dependent (random) utility function and a prior. This 
problem arises naturally in situations where privately informed agents behave strategically. Because of its importance, the 
research trend in this field has been quite active since Harsanyi’s seminal work. The main purpose of this paper is to provide 
new equilibrium existence result for Bayesian games with discontinuous payoffs.
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We introduce the notions of finite/finite∗ payoff security and adopt the aggregate upper semicontinuity condition in the 
ex post games. We show that the (ex ante) Bayesian game is payoff secure and reciprocal upper semicontinuous, and hence 
Reny’s theorem is applicable and a pure strategy Bayesian equilibrium exists. A key issue here is that the quasiconcavity of 
the Bayesian game cannot be guaranteed even if all ex post games are quasiconcave. We show by means of counterexamples 
that the concavity and finite payoff security conditions of the ex post games are both necessary for the existence of a pure 
strategy Bayesian equilibrium.1

The rest of the paper is organized as follows. In Section 2, we introduce a discontinuous game with asymmetric in-
formation and relevant results in deterministic discontinuous games. In Section 3, we prove the existence of a Bayesian 
equilibrium. Section 4 collects the discussions on the conditions of Theorem 2, the comparison of our notion with the uni-
form payoff security condition of Monteiro and Page (2007), and possible extensions to the case of a continuum of states. 
Some concluding remarks are collected in Section 5.

2. Model

2.1. Discontinuous games with asymmetric information

We consider an asymmetric information game

G = {�,(ui, Xi,Fi)i∈I }.
• There is a finite set of players, I = {1, 2, · · · , N}.
• � is a countable state space representing the uncertainty of the world, F is the power set of �.
• Fi is a partition of �, denoting the private information of player i. Fi(ω) denotes the element of Fi including the 

state ω.
• Player i’s action space Xi is a nonempty, compact, convex subset of a topological vector space, X = ∏

i∈I Xi .
• For every i ∈ I , ui : X × � → R is a random utility function representing the (ex post) preference of player i.

A game G is called a compact game if ui is bounded for every i ∈ I; i.e., ∃M > 0, |ui(x, ω)| ≤ M for all x ∈ X and ω ∈ �, 
1 ≤ i ≤ N . A game G is said to be quasiconcave (resp. concave) if ui(·, x−i, ω) is quasiconcave (resp. concave) for every i ∈ I , 
x−i ∈ X−i and ω ∈ �. For every ω ∈ �, the ex post game is Gω = (ui(·, ω), Xi)i∈I . Suppose that each player has a private 
prior πi on F such that πi(E) > 0 for any E ∈Fi . The weighted ex post game is G ′

ω = (wi(·, ω), Xi)i∈I , where wi(·, ω) is a 
mapping from X to R and wi(·, ω) = ui(·, ω)πi(ω) for each ω ∈ �.

For every player i, a strategy is an Fi -measurable mapping from � to Xi . Let

Li = { f i : � → Xi : f i is Fi-measurable},
then Li is a convex and compact set endowed with the product topology. L = ∏

i∈I Li . Given a strategy profile f ∈ L, the
expected utility of player i is

Ui( f ) =
∑
ω∈�

ui( f i(ω), f−i(ω),ω)πi(ω),

then Ui(·) is also bounded by M . Therefore, the (ex ante) Bayesian game of G is G0 = (Ui, Li)1≤i≤N , which is compact and 
concave if the game G is compact and concave. A strategy profile f ∈ L is said to be a Bayesian equilibrium if for each 
player i and any gi ∈ Li ,

Ui( f ) ≥ Ui(gi, f−i).

Remark 1. It is well known that quasiconcavity may not be preserved under summation or integration. Thus, the Bayesian 
game G0 may not be quasiconcave even if G is quasiconcave.

2.2. Deterministic case

Hereafter, Gd = (Xi, ui)
N
i=1 will denote a deterministic discontinuous game, i.e., � is a singleton. The following defini-

tions strengthen the notion of payoff security in Reny (1999).

Definition 1. In the game Gd , player i can secure an n-dimensional payoff (α1, · · · , αn) ∈ R
n at (xi, x1

−i, · · · , xn
−i) ∈ Xi × Xn

−i

if there is xi ∈ Xi , such that ui(xi, yk
−i) ≥ αk for all yk

−i in some open neighborhood of xk
−i , 1 ≤ k ≤ n.

1 Based on a different approach using the communication device, Jackson et al. (2002) also studied discontinuous games with asymmetric information.
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Definition 2. The game Gd is n-payoff secure if for every i ∈ I and (xi, x1
−i, · · · , xn

−i) ∈ Xi × Xn
−i , ∀ε > 0, player i can secure 

an n-dimensional payoff(
ui(xi, x1

−i) − ε, · · · , ui(xi, xn
−i) − ε

)
at (xi, x1

−i, · · · , xn
−i) ∈ Xi × Xn

−i . The game Gd is said to be finitely payoff secure if it is n-payoff secure for any n ∈ N.2

If n = 1, it is called payoff secure.

Given x ∈ X , let u(x) = (u1(x), · · · , uN(x)) be the payoff vector of the game Gd . Define �d = {(x, u(x)) ∈ X × R : x ∈ X}, 
i.e., the graph of the payoff vector u(·), then �d denotes the closure of �d .

The following definition is due to Reny (1999).

Definition 3. The game Gd is better-reply secure if whenever (x∗, α∗) ∈ �d and x∗ is not a Nash equilibrium, some player j
can secure a payoff strictly above α∗

i at x∗ .

In their pioneer paper, Dasgupta and Maskin (1986) proposed the following condition which is weaker than the upper 
semicontinuity condition of the utility functions.

Definition 4. A game Gd is said to be aggregate upper semicontinuous if the summation of the utility functions of all 
players is upper semicontinuous.3

The following generalization is due to Simon (1987), which is called complimentary discontinuity or reciprocal upper 
semicontinuity.

Definition 5. A game Gd is reciprocal upper semicontinuous if for any (x, α) ∈ �d \ �d , there is a player i such that 
ui(x) > αi .

Reny (1999) showed that the game Gd is better reply secure if it is payoff secure and reciprocal upper semicontinuous.

Theorem 1. (See Reny (1999).) Every compact, quasiconcave and better-reply secure deterministic game has a Nash equilibrium.

We will use this theorem to establish our existence results. One may easily develop analogous definitions of “n-payoff 
security” in the framework of many recent papers.

3. Existence of Bayesian equilibrium

In this section, we will show the existence of pure strategy Bayesian equilibrium in discontinuous games with asymmetric 
information.

First, we shall prove Propositions 1 and 2, which provide sufficient conditions to guarantee the payoff security of a 
Bayesian game.

Proposition 1. If the weighted ex post game G ′
ω is finitely payoff secure at every state ω ∈ � and ui(x, ·) is Fi -measurable for every 

x ∈ X and i ∈ I , then the Bayesian game G0 is payoff secure.

Proof. For any i ∈ I , suppose that Fi = {E1, · · · , Ek, · · ·} is the information partition of player i, M is the bound for ui . Given 
any ε > 0, there exists a positive integer K > 0 such that πi(∪K

k=1 Ek) > 1 − ε
6M . For 1 ≤ k ≤ K , there exists a finite subset 

E ′
k ⊆ Ek such that πi(Ek \ E ′

k) <
ε

6K M and πi(E ′
k) > 0.

Fix ωk ∈ E ′
k such that πi(ωk) > 0. Given any f ∈ L, because ui(x, ·) and f i(·) are both Fi -measurable,

ui( f i(ω), f−i(ω),ω) = ui( f i(ωk), f−i(ω),ωk)

for any ω ∈ Ek , 1 ≤ k ≤ K .
Since G ′

ωk
is finitely payoff secure, there exists a point yk

i ∈ Xi , such that

wi(yk
i , yω

−i,ωk) ≥ wi( f i(ωk), f−i(ω),ωk) − ε

3
πi(ωk)

for all yω
−i in some open neighborhood Oω of f−i(ω), ∀ω ∈ E ′

k .

2 It is clear that the uniform payoff security condition of Monteiro and Page (2007) implies our finite payoff security condition. See Section 4.2 for further 
discussion of this point.

3 Carmona (2009) proved the existence of Nash equilibria in compact, quasiconcave games via weak versions of both upper semicontinuity and payoff 
security.
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Let

gi(ω) =
{

yk
i , if ω ∈ Ek for 1 ≤ k ≤ K ,

f i(ω), otherwise.

Then by construction gi is Fi-measurable.

Choose the open set O in L−i such that O  =
(∏

1≤k≤K (
∏

ω∈E ′
k

Oω × X
Ek\E ′

k
−i )

)
× X

�\∪1≤k≤K Ek
−i ,

Ui(gi, g′
−i) =

∑
E∈Fi

∑
ω∈E

wi(gi(ω), g′
−i(ω),ω)

≥
K∑

k=1

∑
ω∈E ′

k

wi(gi(ω), g′
−i(ω),ω) − M

(
πi(� \ (∪K

k=1 Ek)) +
K∑

k=1

πi(Ek \ E ′
k)

)

≥
K∑

k=1

∑
ω∈E ′

k

wi(yk
i , g′

−i(ω),ωk)
πi(ω)

πi(ωk)
− ε

3

≥
K∑

k=1

∑
ω∈E ′

k

[wi( f i(ωk), f−i(ω),ωk) − ε

3
πi(ωk)] πi(ω)

πi(ωk)
− ε

3

≥
K∑

k=1

∑
ω∈E ′

k

wi( f i(ωk), f−i(ω),ω) − 2ε

3

≥
∑
E∈Fi

∑
ω∈E

wi( f i(ωk), f−i(ω),ω) − 2ε

3
− M

(
πi(� \ (∪K

k=1 Ek)) +
K∑

k=1

πi(Ek \ E ′
k)

)

> Ui( f ) − ε

for every g′
−i ∈ O . Thus, the game G0 is payoff secure. �

Remark 2. Note that the finitely payoff security of the weighted ex post game G ′
ω = (wi(·, ω), Xi)i∈I is slightly weaker 

than the finitely payoff security of the ex post game Gω = (ui(·, ω), Xi)i∈I , where ui is the ex post payoff function and 
wi(·, ω) = ui(·, ω) · πi(ω) for every i ∈ I . These two conditions will be equivalent if πi(ω) > 0 for any i ∈ I and ω ∈ �.

In Proposition 1, the ex post utility functions are required to be private information measurable. This assumption can be 
dropped if the finitely payoff security condition is strengthened accordingly.

Definition 6. An asymmetric information game G is n∗-payoff secure if for every i ∈ I , every (xi, x1
−i, · · · , xn

−i) ∈ Xi × Xn
−i

and every (ω1, · · · , ωn) ⊆ D for some D ∈ Fi , ∀ε > 0, there is xi ∈ Xi , such that ui(xi, yk
−i, ωk) ≥ ui(xi, xk

−i, ωk) − ε for all 
yk

−i in some open neighborhood of xk
−i , 1 ≤ k ≤ n.

The game G is said to be finitely∗ payoff secure if it is n∗-payoff secure for any n ∈ N.

Proposition 2. The Bayesian game G0 is payoff secure if G is finitely∗-payoff secure.

Proof. As in the proof of Proposition 1, we could find some positive integer K and finite set E ′
k for each 1 ≤ k ≤ K satisfying 

the same conditions therein.
Given any f ∈ L. Since G is finitely∗ payoff secure, for each 1 ≤ k ≤ K , there exists a point yk

i ∈ Xi , such that

ui(yk
i , yω

−i,ω) ≥ ui( f i(ω), f−i(ω),ω) − ε

3

for all yω
−i in some open neighborhood Oω of f−i(ω), ∀ω ∈ E ′

k .
Let

gi(ω) =
{

yk
i , if ω ∈ Ek for 1 ≤ k ≤ K ,

f i(ω), otherwise.

Then the rest of the proof proceeds similarly as in the proof of Proposition 1. �
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Proposition 3. In the game G, if the weighted ex post game G ′
ω is aggregate upper semicontinuous at every state ω ∈ �, then the 

Bayesian game G0 is reciprocal upper semicontinuous.

Proof. By way of contradiction, suppose that the Bayesian game G0 is not reciprocal upper semicontinuous. Then there 
exists a sequence { f n} ⊆ L, f n → f and U ( f n) → α as n → ∞, where U ( f ) = (U1( f ), · · · , U N( f )) and α = (α1, · · · , αN ) ∈
R

N . Ui( f ) ≤ αi for 1 ≤ i ≤ N and U ( f ) 
= α.
Denote ε = max1≤i≤N(αi − Ui( f )), ε > 0. Thus,

∑
i∈I

U i( f ) ≤
∑
i∈I

αi − ε.

There exists a finite subset E ⊆ � such that πi(� \ E) < ε
2N M for every i ∈ I , where M is the bound of ui for all i.

Then for any i ∈ I , Ui( f n) can be divided into two parts: μn
i = ∑

ω∈E wi( f n(ω), ω) and νn
i = ∑

ω/∈E wi( f n(ω), ω), 
Ui( f n) = μn

i + νn
i . Let μn = {μn

i }i∈I , since {μn}n∈N is bounded, there is a subsequence, say itself, which converges to some 
μ ∈R

N . Since νn
i ≤ Mπi(� \ E) < ε

2N for any i ∈ I and n ∈ N, μi ≥ αi − ε
2N for every i ∈ I .

At each state ω ∈ E and i ∈ I , since wi( f n(ω), ω) is bounded, there is a subsequence which converges to some βω
i . 

Since there are only finitely many players and states, we can assume without loss of generality that wi( f n(ω), ω) → βω
i as 

n → ∞, then 
∑

ω∈E βω
i = μi .

Since f n(ω) → f (ω) for every ω ∈ E and G ′
ω is aggregate upper semicontinuous,

∑
i∈I

wi( f (ω),ω) ≥
∑
i∈I

βω
i .

Thus,

∑
i∈I

U i( f ) ≥
∑
i∈I

∑
ω∈E

wi( f (ω),ω) ≥
∑
i∈I

∑
ω∈E

βω
i =

∑
i∈I

μi ≥
∑
i∈I

αi − ε

2
,

which is a contradiction. �
By combining Theorem 1, Propositions 1, 2 and 3, we obtain the following result which is an extension of Reny (1999)

to Bayesian games with discontinuous payoffs.

Theorem 2. Suppose that an asymmetric information game G is compact, the corresponding Bayesian game G0 is quasiconcave, and 
the weighted ex post game G ′

ω is aggregate upper semicontinuous at each state ω. Then a Bayesian equilibrium exists if either of the 
following conditions holds.

1. The weighted ex post game G ′
ω is finitely payoff secure at every state ω ∈ � and ui(x, ·) is Fi -measurable for every x ∈ X and 

i ∈ I .
2. The game G is finitely∗ payoff secure.

Remark 3. Note that the (ex ante) Bayesian game G0 is assumed to be quasiconcave. However, Example 1 below indicates 
that the theorem may fail if we only require that G is quasiconcave. To impose conditions in the primitive stage, one possible 
alternative is to require that G be concave. However, the concavity of the utility function implies that it is continuous on 
the interior of its domain, and hence the discontinuity only arises on the boundary. This is a rather strong assumption and 
will deter many possible applications.

4. Discussion

In this section, we shall first provide two examples to show the necessity of the quasiconcavity and the finite payoff 
security conditions. In addition, we shall also compare our notion of finite payoff security and the uniform payoff security 
condition of Monteiro and Page (2007), and discuss the possible extension of Theorem 2 to the setting of a continuum of 
states based on the uniform payoff security condition.

4.1. Two counterexamples

To guarantee the existence of a Bayesian equilibrium, the expected utility of each player is required to be quasiconcave 
in Theorem 2. Example 1 below shows that this condition cannot be dropped, even if all other conditions are satisfied and 
the ex post utility function is quasiconcave itself.
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Example 1 (Importance of concavity). Consider the following game G . There are two players I = {1, 2} competing for an
object. The strategy spaces for players 1 and 2 are respectively X and Y , X = Y = [0, 1]. Player 1 has only one possible 
private value 1, and player 2 has two possible private values 0 and 1.

Denote a = (1, 1) and b = (1, 0) (the first component is the private value of player 1 and the second component is the 
private value of player 2). The state space is � = {a, b}. The information partitions and priors are as follows:

F1 = {{a,b}},π1(a) = π1(b) = 1

2
;

F2 = {{a}, {b}},π2(a) = π2(b) = 1

2
.

For ω = a, b, the utility function of player 1 is

u1(x, y,ω) =
{

1 − x, if x ≥ y
0, otherwise.

Then u1(x, y, ·) is measurable with respect to F1 for any (x, y) ∈ X × Y .
The utility function of player 2 is

u2(x, y,a) =
{

1 − y, if y > x
0, if y ≤ x

and

u2(x, y,b) =
{−y, if y > x

−y
2 , if y ≤ x.

1. At both states, when there is a tie, player 1 will take the good and player 2 gets nothing.
2. At state b, the private value of player 2 is 0, bidding for positive price will harm both, thus player 2 will be punished 

when he bids more than 0 even if he loses the game.

The ex post games Ga and Gb are 2-payoff secure. Consider the ex post game Ga and player 1. Given ε > 0, x ∈ X and 
(y1, y2) ∈ Y × Y . Assume y1 ≥ y2 without loss of generality. There are three possible cases.

1. If y1 ≤ x, then let player 1 bid x = min{x + ε
2 , 1}. For i = 1, 2, y′

i ≤ min{x + ε
2 , 1} for any y′

i in a small neighborhood of 
yi , hence the payoff of player 1 is at least 1 − x − ε

2 .
2. If y2 > x, then let player 1 bid x = x and his payoff cannot be worse off.
3. If y2 ≤ x < y1, then let player 1 bid x = x + δ such that x + δ < y1 and 0 < δ < ε .

Similarly, one can show the 2-payoff security of player 2 at state a and b. Therefore, the ex post game is 2-payoff secure at 
each state. It is easy to see that the summations of ex post utility functions are upper semicontinuous at both states, and 
the assumptions of quasiconcavity and compactness are satisfied. Thus, there are Nash equilibria for both ex post games. At 
state a, the unique equilibrium is (1, 1); at state b, the unique equilibrium is (0, 0).

However, there is no Bayesian equilibrium in this game.4 Suppose (x, y) is an equilibrium, where y = (y(a), y(b)). In 
state b, player 2 will always choose y(b) = 0, thus player 1 can guarantee himself a positive payoff by choosing x = 0. But 
if x < 1, player 2 has no optimal strategy at state a. Thus, player 1 has to choose x = 1 and gets 0 payoff, a contradiction.

Remark 4. In Example 1, although the ex post utility function is quasiconcave at both states, the expected utility function 
is not quasiconcave, and hence there is no Bayesian equilibrium.

In Theorem 2, we strengthen the payoff security of Reny (1999) to finite payoff security. The second example shows that 
the payoff security of every ex post game cannot guarantee the payoff security of the Bayesian game.

Example 2 (Ex post payoff security does not imply ex ante payoff security). Consider the following game: the player space is I =
{1, 2, 3}, the state space is � = {a, b}, and the information partitions of all players are F1 =F2 = {{a, b}} and F3 = {{a}, {b}}. 
Players have common prior π(a) = π(b) = 1

2 . The action space of player i is Xi = [0, 1], i = 1, 2, 3. The games L and R are 
listed below.

In both states, players 1 and 2 will play the game L if x3 = 0 and the game R otherwise. Player 1’s action is in the left 
and player 2’s action is in the top.

4 Note that there is mixed strategy equilibria for this game: for example, Bidder 1’s strategy is 1
2 δ0 + 1

2 U ([0, 12 ]), Bidder 2’s strategy is 0 when his value 
is 0, and U ([0, 12 ]) when his value is 1, where δ0 is the delta measure concentrated at 0 and U ([0, 12 ]) is the uniform distribution on [0, 12 ]. However, we 
only focus on pure strategies in this paper.
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0
(0,1)

1

0 (0,1) 1
(1,6) (0,7) (3,7)

(5,4) (4,5) (3,7)

(6,3) (6,3) (4,5)

L

0
(0,1)

1

0 (0,1) 1
(14,14) (16,10) (16,10)

(13,15) (14,14) (14,14)

(13,15) (12,15) (12,15)

R

The utility function of player 3 is defined as follow:

u3(x1, x2, x3,ω) =
{

1, if x3 = 0 at ω = a or x3 ∈ (0,1] at ω = b;
0, otherwise.

Below we study the ex post game Ga and show that it is payoff secure but not 2-payoff secure. The same result holds for 
the ex post game Gb . However, the Bayesian game is not payoff secure.

In the game L, player 1 can choose the dominant strategy x1 = 1 and player 2 can choose the dominant strategy x2 = 1, 
thus the game L is payoff secure. In the game R , player 1 can choose the dominant strategy x1 = 0 and player 2 can choose 
the dominant strategy x2 = 0, thus the game R is payoff secure.

Suppose state a realizes. The payoff of player 3 is secured since he can always choose x3 = 0, which could guarantee his 
highest payoff. For players 1 and 2, if player 3’s action x3 = 0, then players 1 and 2 will play the game L and it is payoff 
secure since if x3 deviates in a small neighborhood, then players 1 and 2 will play the game R and their payoffs are strictly 
higher; if x3 stays unchanged and they are still in game L, then the payoff security of the game L supports our claim. If 
player 3’s action x3 ∈ (0, 1], they will play game R and it is payoff secure since a sufficiently small neighborhood of x3 is 
still included in (0, 1] and the game R itself is payoff secure. Therefore, the ex post game Ga is payoff secure.

However, this game is not 2-payoff secure. For example, let x1 = 0, (x1
2, x

1
3) = (1, 0) and (x2

2, x
2
3) = (1, 1), there is no 

action which could guarantee that player 1 can secure the 2 dimensional payoff vector (3, 16). Similarly, one could show 
that the ex post game Gb is also payoff secure but not 2-payoff secure.

Finally, we verify our claim that the Bayesian game is not payoff secure. Let the strategy of player 3 be x3 =
(x3(a), x3(b)) = (0, 1), the expected utilities for players 1 and 2 are listed as the following game E .

0
(0,1)

1

0 (0,1) 1

( 15
2 ,10) (8, 17

2 ) ( 19
2 , 17

2 )

(9, 19
2 ) (9, 19

2 ) ( 17
2 , 21

2
)

( 19
2

,9) (9,9) (8,10)

E

Then player 1 cannot secure his payoff if x1 = 1 and x2 = 0, and player 2 cannot secure his payoff if x1 = 0 and x2 = 0.
Moreover, this game does not have a Bayesian equilibrium. It is easy to see that player 3 will choose x3(a) = 0 and 

x3(b) ∈ (0, 1]. Consequently, the expected payoff matrix of players 1 and 2 is E . However, the game E has no equilibrium.

Remark 5. The game in Example 2 is obviously compact and satisfies the private information measurability requirement. 
We need to show that the Bayesian game is quasiconcave. It is clear that the expected utility of player 3 is quasiconcave. 
Now we consider players 1 and 2. Given x3 = (x3(a), x3(b)). If x3 = (0, 0), then players 1 and 2 will play the game L in 
both states. Their expected payoff matrix is L, which is quasiconcave. If x3 ∈ (0, 1] × (0, 1], players 1 and 2 will play the 
game R in both states, and hence their expected payoff matrix is the quasiconcave game R . Otherwise, players 1 and 2 will 
play the game L at one state and the game R at the other state. That is, their expected payoff matrix is E , which is also 
quasiconcave.

4.2. Comparison with Monteiro and Page (2007)

Below, we compare our notion of finite payoff security with the uniform payoff security of Monteiro and Page (2007).
The following condition is due to Monteiro and Page (2007).

Definition 7. The game Gd is uniform payoff secure if for every i ∈ I and xi ∈ Xi , ∀ε > 0, there is xi ∈ Xi such that for every 
x−i ∈ X−i , ui(xi, y−i) ≥ ui(xi, x−i) − ε for all y−i in some open neighborhood of x−i .

A game G is uniformly payoff secure if each player starting at any strategy xi ∈ Xi has a strategy xi ∈ Xi he can move to in 
order to secure a payoff of ui(xi, x−i) against all possible small deviations of all strategy profiles of others. It is obvious that 
the uniform payoff security condition is stronger than our finite payoff security condition. Below, we provide an example 
which shows that the uniform payoff security is strictly stronger than the finite payoff security condition.
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Example 3. Given a deterministic game G such that I = {1, 2}, X1 = X2 = [0, 1],

u1(x1, x2) =
⎧⎨
⎩

−1, if x1 < x2 < 1
2 (x1 + 1);

0, if x1 = x2 or x1 = 2x2 − 1;
1, otherwise

and u2 ≡ 0.
We shall show that this game is finitely payoff secure, but not uniformly payoff secure. We only need to verify this for 

player 1. Fix arbitrary n ∈ N. Pick (x1, x1
2, . . . , x

n
2) ∈ X1 × Xn

2 . Without loss of generality, assume that x1
2 < x2

2 < · · · < xn
2. If 

xn
2 < 1, then choose x1 = 1; if xn

2 = 1, then choose x1 sufficiently close to 1 such that xn−1
2 < x1 < 1. In all these cases we 

can find a neighborhood O xk
2

of xk
2 such that u1(x1, yk

2) ≥ u1(x1, xk
2) for all yk

2 ∈ O xk
2
, 1 ≤ k ≤ n.

However, the uniform payoff security condition is not satisfied in this game. Thus, the uniform payoff security condition 
is strictly stronger than the finite payoff security condition.

4.3. Extension of Theorem 2 to a continuum of states

By modifying the uniform payoff security condition of Monteiro and Page (2007) and adopting the standard absolute 
continuity condition of Milgrom and Weber (1985), Carbonell-Nicolau and McLean (2014) proved the existence of behav-
ioral/distributional strategy Bayesian equilibrium in the setting of a continuum of states. They do not need to impose the 
quasiconcavity condition on the payoffs since the concavity property is automatic by working with behavioral/distributional 
strategies. We will show that our Theorem 2 can be extended to the setting of a continuum of states by strengthening the 
finite payoff security to uniform payoff security.

The model of Bayesian games with a continuum of states is as follows.

• The set of players: I = {1, 2, . . . , N}.
• The set of actions available to each player: {Xi}i∈I . Each Xi is a nonempty compact metric space endowed with the 

Borel σ -algebra B(Xi). Let X = ×n
i=1 Xi and B(X) = ⊗i∈IB(Xi).

• The (private) information space for each player: Ti . Each Ti is a measurable space endowed with a σ -algebra Ti . Let 
T = ×n

i=1Ti and T = ⊗n
i=1Ti .

• The payoff functions: {ui}i∈I . Each ui: X × T →R is a bounded measurable mapping.
• The information structure: λ, a probability measure on the measurable space (T , T ) with marginal λi on Ti for each 

i ∈ I .

The following condition is an extension of Definition 7 to the case of incomplete information games, and it is due to 
Carbonell-Nicolau and McLean (2014). Based on this condition, Carbonell-Nicolau and McLean (2014) proved the existence 
of a behavioral strategy equilibrium (see Theorem 1 therein).

Definition 8. The Bayesian game is uniformly payoff secure if for each i ∈ I , ε > 0, and a behavioral strategy f i , there exists 
another behavioral strategy gi such that for all (t, x−i), there exists a neighborhood V x−i of x−i such that

ui(t, gi(ti), y−i) > ui(t, f i(ti), x−i) − ε

for all y−i ∈ V x−i .

Below, we consider the purification of behavioral strategies. He and Sun (2014) proposed the “relative diffuseness” condi-
tion as a characterization of the relation between two kinds of diffuseness of information, and proved a purification theorem 
for Bayesian games based on this condition.

For each i ∈ I , let (Ti, Ti, λi) be the private information space, and Fi ⊆ Ti be the smallest σ -algebra relative to which ui
is measurable. The σ -algebras Ti and Fi will represent the diffuseness of information from the aspect of strategies and from 
the aspect of payoffs, respectively. The probability spaces (Ti, Ti, λi) and (Ti, Fi, λi) will be used to model the information 
space and the payoff-relevant information space.

For any nonnegligible subset D ∈ Ti , the restricted probability space (D, F D
i , λD

i ) is defined as follows: F D
i is the 

σ -algebra {D ∩ D ′: D ′ ∈ Fi} and λD
i the probability measure re-scaled from the restriction of λi to F D

i . Furthermore, 
(D, T D

i , λD
i ) can be defined similarly.

Definition 9. Following the notations above, Fi is said to be setwise coarser than Ti if for every D ∈ Ti with λi(D) > 0, 
there exists a Ti-measurable subset D0 of D such that λi(D0�D1) > 0 for any D1 ∈F D

i .

The following assumption due to He and Sun (2014) states that on any nonnegligible set D ⊆ Ti , T D
i is always larger 

than F D
i . That is, the strategy-relevant diffuseness of information is essentially richer than the payoff-relevant diffuseness 

of information.
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Assumption (RD). For each i ∈ I , (Ti, Ti, λi) is atomless and Fi is setwise coarser than Ti .

Now we are ready to prove the existence of a pure strategy Bayesian equilibrium with a continuum of states.

Theorem 3. Suppose that

1. Assumption (RD) holds,5 ui is measurable with respect to Fi for each i ∈ I , and λ = ⊗i∈Iλi ;
2. the Bayesian game is uniformly payoff secure and that each t ∈ T , the map 

∑
i∈I ui(t, ·): X → R is upper semicontinuous.

Then there exists a pure strategy Bayesian equilibrium.

Proof. By Theorem 1 of Carbonell-Nicolau and McLean (2014), there exists a behavioral strategy Bayesian equilibrium f , 
and by Theorem 2 of He and Sun (2014), f has a purification g , which is a pure strategy Bayesian equilibrium. �
Remark 6. In an incomplete information game with finitely many states, one can work with the k-payoff security condition, 
where k could be the number of all states in the Bayesian game. However, as we consider a Bayesian game with countably 
many states, we need to extend the k-payoff security to finite payoff security as we may need to use a Bayesian game with 
arbitrarily finitely many states to approximate the original Bayesian game. Monteiro and Page (2007) proved the existence 
of a mixed strategy equilibrium m = (m1, . . . , mn) with the stronger condition of uniform payoff security in a simple de-
terministic setting. Indeed, their result can be understood as an existence result of a pure strategy Bayesian equilibrium in 
a Bayesian game with uncountable states and state-irrelevant payoffs. Thus, they need to further strengthen the condition 
due to the larger size of the state space.

In particular, suppose that each player can only observe his own private signal from the unit interval [0, 1], which is 
endowed with the uniform distribution η. Let � = [0, 1]n be the state space. The payoff of each player only depends on 
the action profile, but not on the state. Then the deterministic game is reformulated as a Bayesian game with uncountable 
states and state-irrelevant payoffs.

The mixed strategy mi of player i in the deterministic game can be realized by his private signal (like a randomization 
device) to be a pure strategy f i in the sense that mi = η ◦ f −1

i . It is easy to check that f = ( f1, . . . , fn) is a pure strategy 
Bayesian equilibrium in this Bayesian game.

If we view a deterministic discontinuous game as such a Bayesian game, then Fi = {∅, [0, 1]} for each i ∈ I since players’ 
payoffs do not depend on the states. Thus, our Assumption (RD) holds trivially, and our result goes beyond Monteiro and 
Page (2007) by allowing for the payoffs to be state-dependent.6

Remark 7. If one views a deterministic game as a Bayesian game with uncountable states and let f i and gi be pure strategies 
and state irrelevant in Definition 8, then this condition reduces to the uniform payoff security in the sense of Monteiro 
and Page (2007). In Theorem 3, we adopt the uniform payoff security condition in the sense of Carbonell-Nicolau and 
McLean (2014) since our payoffs are state dependent, and thus the best response of each player is typically state dependent. 
Therefore, one needs to compare the state dependent strategies for each player; for more discussions, see Carbonell-Nicolau 
and McLean (2014).

5. Concluding remarks

Our purpose was to impose the same assumptions of Reny (1999) on primitives and prove new equilibrium existence 
theorems for Bayesian games. We showed that if players are Bayesians, the conditions of Reny (1999) need to be strength-
ened. By introducing a new payoff security condition which is a strengthening of the one of Reny (1999), we showed that if 
our new condition is imposed on the weighted ex post utility functions, then the ex ante expected utility is payoff secure. 
In view of this result and by assuming that the expected utilities are quasiconcave, we proved an equilibrium existence 
theorem for discontinuous games with asymmetric information. Also, we pointed out that the concavity assumption plays 
an important role; specifically, if the ex post utility function of each player is not concave, then a Bayesian equilibrium may 
not exist

The results of the current paper can be extended to a social system or abstract economies à la Debreu with asymmet-
ric information and discontinuous expected payoffs. Such results can be applied to concrete economies with asymmetric 
information and they will enable us to obtain competitive equilibrium/rational expectations equilibrium results with dis-
continuous expected payoffs. He and Yannelis (2014) considered discontinuous games with asymmetric information under 
ambiguity. They showed that if agents face ambiguity, then Reny’s theorem can be generalized to an asymmetric information 
framework.

5 Instead, one can assume that (Ti , Ti , λi) is an atomless Loeb space/saturated space for each i ∈ I . The purification result for Bayesian games still holds, 
see Loeb and Sun (2006) and Wang and Zhang (2012).

6 We thank an anonymous referee for suggesting us to add this remark.
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